姓名:姜传佳
职称:教授(博士生导师、硕士生导师)
研究领域:污染物环境界面化学、环境纳米技术、环境催化、土壤-地下水污染修复
联系电话:16622389869
邮箱: jiangcj@nankai.edu.cn
教育背景
2005.08–2009.07,清华大学环境工程专业,获学士学位
2009.09–2011.06,清华大学环境科学与工程专业,获硕士学位
2011.08–2016.05,杜克大学土木与环境工程专业,获博士学位
科研教学经历
2016.06–2016.10,武汉理工大学材料复合新技术国家重点实验室,助理研究员
2016.11–2017.12,武汉理工大学材料复合新技术国家重点实验室,副研究员
2018.01–2021.12,南开大学环境科学与工程学院,副教授
2021.12–至今,南开大学环境科学与工程学院,教授
开设课程
2018年起,《环境污染与修复(双语)》,南开大学本科通识公选课,春季学期
2021年起,《环境污染与修复》,南开大学本科专业课(全英文课程),秋季学期
2022年起,《纳米材料的环境效应和应用》,南开大学研究生专业选修课(全英文课程),春季学期
2022年起,《物理化学》,南开大学本科专业课,秋季学期
学术与社会任职
1. 期刊编委
SCI期刊Environmental Toxicology and Chemistry编委(2019-至今)
SCI期刊Toxics编委(2022-至今)
SCI期刊《物理化学学报》(Acta Physico-Chimica Sinica)青年编委(2025-至今)
SCI期刊Chinese Chemical Letters青年编委(2019-2022)
ESCI期刊Frontiers in Nanotechnology编委(2019-至今)
ESCI期刊Eco-Environment & Health青年编委(2023-至今)
2. 学术期刊审稿人
担任Advanced Materials, ACS Nano, Advanced Functional Materials, Advanced Science, ACS Catalysis, Environmental Science & Technology, Applied Catalysis B: Environmental, Chemistry of Materials, JACS Au, Water Research, Journal of Catalysis, Small, Journal of Materials Chemistry A, Journal of Hazardous Materials, Chemical Engineering Journal, Environmental Science: Nano, Carbon, Science China Technological Sciences, ACS Applied Materials & Interfaces, Journal of Agricultural and Food Chemistry, AIChE Journal, Environmental Pollution, Journal of Environmental Sciences, Journal of Cleaner Production, ACS ES&T Water, Chinese Chemical Letters, Science of the Total Environment, Catalysis Science & Technology, NanoImpact, Langmuir, Chemosphere, Environmental Toxicology and Chemistry等60余个期刊的审稿人
3. 学术组织成员
美国化学会(ACS)及环境化学分会会员(2014年3月至今)
中国化学会会员(2016年12月至今)
中国环境科学学会会员(2017年9月至今)
环境毒理学与化学学会(SETAC)会员(2018年9月至今)
科研项目
8. 天津市自然科学基金重点项目,工业集聚区有机污染物跨介质迁移转化机制及原位修复原理研究(23JCZDJC00740),2023.10–2026.09(主持)
7. 国家自然科学基金面上项目,纳米铁硫化物活化分子氧原位去除地下含水层中残留态NAPL(非水相液体)的机制研究(22276101),2023.01–2026.12(主持)
6. 国家重点研发计划“大气与土壤、地下水污染综合治理”重点专项(2022)课题,工业集聚区土壤-地下水有机污染物跨介质迁移转化数值模拟(2022YFC3702402),2022.12–2026.11(参与/项目骨干)
5. 国家自然科学基金重点国际(地区)合作研究项目,用于污染场地地下含水层原位修复的新型纳米技术研究(22020102004),2021.01–2025.12(参与/项目骨干)
4. 天津市科学技术局,天津市自然科学基金青年项目,生物炭-纳米金属氧化物复合材料修复农田土壤无机-有机复合污染的晶面效应研究(20JCQNJC02050),2020.04–2022.03(主持)
3. 国家重点研发计划“场地土壤污染成因与治理技术”重点专项(2019)课题,污染场地中持久性有机污染物积累动力学和健康风险模型的构建及验证(2019YFC1804204),2020.01–2023.12(参与/项目骨干)
2. 南开大学“百名青年学科带头人培养计划”启动经费,典型复合纳米材料的水环境转化与生物影响机制研究,2019.01–2024.12(主持)
1. 国家自然科学基金青年科学基金,超薄层状材料负载低含量钯室温催化氧化去除气态甲醛研究(51702248),2018.01–2020.12(主持)
学术论著
共发表学术论文100余篇,SCI总引用20000余次,H指数58。以第一作者或通讯作者在环境科学、化学、材料科学、工程技术等领域的高质量学术期刊发表论文62篇,其中包括12篇ESI高被引论文。入选科睿唯安2020及2021年度“高被引科学家”。
最新论文列表及引用情况:
Web of Science ResearcherID:C-9398-2014、 ResearchGate、Google Scholar
代表性论文如下(*表示通讯作者,#表示共同第一作者):
第一作者或通讯作者论文
38) Meng K, Zhang JJ, Zhu BC*, Jiang CJ*, García H*, Yu JG*. Interfacial Charge Transfer in ZnO/COF S-Scheme Photocatalyst via Zn─N Bond. Advanced Materials, 2025, 37: 2505088.
37) Cai JJ, Cheng C, Liu BW, Zhang JJ*, Jiang CJ*, Cheng B*. CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025,41(8): 100084.
36) Zhu BC, Jiang CJ*, Xu JS, Zhang ZY, Fu JW, Yu JG*. Quantum dots in S-scheme photocatalysts, Materials Today, 2025, 82: 251-273.
35) Wei M, Zhou X, Cheng C, Zhang JJ, Jiang CJ*, Cheng B*. One-step ultrasonic synthesis and fs-TAS investigation of C3N4 nanosheet/thiophene-based polymer S-scheme photocatalyst for H2 production. Journal of Materials Science & Technology, 2025, 232: 302-312
34) Xiang XL, Cheng B*, Zhu BC, Jiang CJ*, Liang GJ. High‐entropy alloy nanocrystals boosting photocatalytic hydrogen evolution coupled with selective oxidation of cinnamyl alcohol, Chinese Journal of Catalysis, 2025, 68: 326-335.
33) Duan L, Liu JH, Wang J, Jiang CJ*, Zhang T, Chen W. A screening model for predicting the potential of soil colloids-enhanced leaching of hydrophobic organic contaminants to groundwater at contaminated sites. Journal of Environmental Sciences, 2025, 150: 309-317.
32) Liang ZS, Liu KM, Li YY, Liu YQ, Jiang CJ*, Zhang T*, Chen W. Oxygen vacancies boost the efficacy of MnO2 nanoparticles in catalyzing the hydrolytic degradation of organophosphate esters: implications for managing plastic additive pollution. Environmental Science: Nano, 2025, 12, 1364-1374.
31) Li YY#, Liu KM#, Guo Y, Wang HY*, Liang ZS*, Jiang CJ*. Mechanistic insights into facet-dependent catalytic hydrolysis of organophosphate ester by α-MnO2 nanorods, Separation and Purification Technology, 2025, 360: 130940.
30) Pei, XL, Wang WC, Chen ZH, Liu KM, Liang ZS, Jiang CJ*, Zhang T*, Chen W. Metal heteroatoms significantly enhance efficacy of TiO2 nanomaterials in promoting hydrolysis of organophosphates: Implications for mitigating pollution of plastic additives. Science of The Total Environment, 2024, 957: 177548.
29) Li T, Ju YT, Du TT, Jiang CJ*, Zhang T*, Chen W*. Anatase TiO2 nanomaterials are much more effective in enhancing hydrolysis of organophosphorus compounds than their rutile counterparts. Environmental Science: Nano, 2024, 11: 2447-2456.
28) Liang ZS, Jiang CJ*, Li YY, Liu YQ, Yu JG, Zhang T, Alvarez P, Chen W. Single-Atom Iron Can Steer Atomic Hydrogen toward Selective Reductive Dechlorination: Implications for Remediation of Chlorinated Solvents-Impacted Groundwater. Environmental Science & Technology, 2024, 58(26): 11833-11842.
27) Qi Y, Guan WY, Jiang CJ*, Chen W, Zhang T*. Protein Corona Formation on Cadmium-Bearing Nanoparticles: Important Role of Facet-Dependent Binding of Cysteine-Rich Proteins. Environment & Health, 2024, 2(9): 623-630.
26) He FR, Xu LR, Wang HY*, Jiang CJ*. Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites. Toxics, 2024, 12(11): 773.
25) Fei J, Bai X, Jiang CJ*, Yin XQ*, Ni B-J. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. Science of the Total Environment, 2024, 954: 176342.
24) Li YY#, Huo ZB#, Ying YQ, Duan L, Jiang CJ*, Chen W. Effects of transient flow conditions on colloid-facilitated release of decabromodiphenyl ether: Implications for contaminant mobility at e-waste recycling sites. Eco-Environment & Health, 2024, 3(3): 317-324.
23) Huo ZB#, Xi MJ#, Xu LR, Jiang CJ*, Chen W. Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments. Frontiers of Environmental Science & Engineering, 2024, 18(2): 21.
22) Shen MM, Liu SL, Jiang CJ*, Zhang T, Chen W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides, Eco-Environment & Health, 2023, 2(3): 161-175.
21) Jiang CJ, Liu SL, Zhang T*, Liu Q*, Alvarez PJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. Environmental Science & Technology, 2022, 56(12): 7426-7447.
20) Ye JW, Zhu BC, Cheng B, Jiang CJ*, Wageh S, Al-Ghamdi AA, Yu JG*. Synergy between Platinum and Gold Nanoparticles in Oxygen Activation for Enhanced Room-Temperature Formaldehyde Oxidation. Advanced Functional Materials, 2022, 32: 2110423.
19) Pei XL, Zhang T, Zhong JY, Chen ZH, Jiang CJ*, Chen W. Substoichiometric titanium oxide Ti2O3 exhibits greater efficiency in enhancing hydrolysis of 1,1,2,2-tetrachloroethane than TiO2 nanomaterials. Science of the Total Environment, 2021, 774: 145705.
18) Li T, Zhong W, Jing CY, Li XG, Zhang T, Jiang CJ*, Chen W*. Enhanced Hydrolysis of p-Nitrophenyl Phosphate by Iron (Hydr)oxide Nanoparticles: Roles of Exposed Facets. Environmental Science & Technology, 2020, 54(14): 8658-8667.
17) Wang YY, Jiang CJ*, Le Y, Cheng B, Yu JG*. Hierarchical honeycomb-like Pt/NiFe-LDH/rGO nanocomposite with excellent formaldehyde decomposition activity. Chemical Engineering Journal, 2019, 365: 378-388.
16) Li T, Shen ZL, Shu YL, Li XG, Jiang CJ*, Chen W*. Facet-dependent evolution of surface defects in anatase TiO2 by thermal treatment: implications for environmental applications of photocatalysis. Environmental Science: Nano, 2019, 6: 1740-1753.
15) Pei XL, Jiang CJ*, Chen W. Enhanced hydrolysis of 1,1,2,2-tetrachloroethane by multi-walled carbon nanotube/TiO2 nanocomposites: The synergistic effect. Environmental Pollution, 2019, 255: 113211.
14) Fu JW, Yu JG*, Jiang CJ*, Cheng B. g-C3N4-based heterostructured photocatalysts. Advanced Energy Materials, 2018, 8(3): 1701503.
13) Xu DF, Cheng B, Wang WK, Jiang CJ*, Yu JG*. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 2018, 231: 368-380.
12) Huang SY, Cheng B, Yu JG*, Jiang CJ*. Hierarchical Pt/MnO2–Ni(OH)2 Hybrid Nanoflakes with Enhanced Room-Temperature Formaldehyde Oxidation Activity. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12481-12488.
11) Wang WK, Xu DF, Cheng B, Yu JG*, Jiang CJ*. Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. Journal of Materials Chemistry A, 2017, 5: 5020-5029.
10) Duan YY, Song SQ, Cheng B, Yu JG*, Jiang CJ*. Effects of hierarchical structure on the performance of tin oxide-supported platinum catalyst for room-temperature formaldehyde oxidation. Chinese Journal of Catalysis, 2017, 38:199-206.
9) Huang SY, Zhu XF, Cheng B, Yu JG*, Jiang CJ*. Flexible nickel foam decorated with Pt/NiO nanoflakes with oxygen vacancies for enhanced catalytic formaldehyde oxidation at room temperature. Environmental Science: Nano, 2017, 4: 2215-2224.
8) Ye JW#, Zhu XF#, Cheng B, Yu JG*, Jiang CJ*. Few-layered graphene-like boron nitride: A highly efficient adsorbent for indoor formaldehyde removal. Environmental Science & Technology Letters, 2017, 4(1): 20-25.
7) Jiang CJ, Castellon BT, Matson CW, Aiken GR, Hsu-Kim H*. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos. Environmental Science & Technology, 2017, 51(3): 1395-1404.
6) Jiang CJ, Aiken GR, Hsu-Kim H*. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles. Environmental Science & Technology, 2015, 49(19): 11476-11484.
5) Jiang CJ, Hsu-Kim H*. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry. Environmental Science: Processes & Impacts, 2014, 16: 2536-2544.
4) Jiang CJ, Zhang PY*, Zhang B, Li JG, Wang MX. Facile synthesis of activated carbon-supported porous manganese oxide via in situ reduction of permanganate for ozone decomposition. Ozone: Science & Engineering, 2013, 35(4): 308-315.
3) Jiang CJ, Li SS, Zhang PY*, Wang J. Pollution level and seasonal variations of carbonyl compounds, aromatic hydrocarbons, and TVOC in a furniture mall in Beijing, China. Building and Environment, 2013, 69: 227-232.
2) Jiang CJ, Zhang PY*. Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors. Frontiers of Environmental Science & Engineering, 2012, 6(2): 184-194.
1) 姜传佳,李申屾,张彭义*,王娟. 北京市某家具城室内空气污染水平与特征. 环境科学,2010,31(12): 2860-2865.
非第一或通讯作者
22) Du TT, Guan WY, Zhang ZH, Jiang CJ, Alvarez P, Chen W, Zhang T*. Facet-dependent oxysulfidation of Cu2O nanomaterials: implications for improving the efficacy of nanopesticides. Environmental Science: Nano, 2025, 12: 675-685.
21) Yang CY, Duan L*, Wang J, Jiang CJ, Zhang T, Chen W*. Preferential association of PBDEs and PAHs with mineral particles vs. dissolved organic carbon: Implications for groundwater contamination at e-waste sites. Journal of Environmental Sciences, 2025, 150: 288-296.
20) Duan L, Zhong JY, Ying YQ, Jiang CJ, Chen W*. Preferential association of polycyclic aromatic hydrocarbons (PAHs) with soil colloids at an e-waste recycling site: Implications for risk of PAH migration to subsurface environment. Science of the Total Environment, 2023, 889: 164222.
19) Fu D, Duan L*, Li XY, Jiang CJ, Zhang T, Chen W*. Citrate-promoted dissolution of nanostructured manganese oxides: Implications for nano-enabled sustainable agriculture. Journal of Environmental Sciences, 2023, 125: 492-498.
18) Duan L, Ying YQ, Zhong JY, Jiang CJ, Chen W*. Key factors controlling colloids–bulk soil distribution of polybrominated diphenyl ethers (PBDEs) at an e-waste recycling site: Implications for PBDE mobility in subsurface environment. Science of the Total Environment, 2022, 819: 153080.
17) Mello DF, Maurer LL, Ryde IT, Songr DH, Marinakos, SM, Jiang CJ, Wiesner MR, Hsu-Kim H, Meyer JN*. In Vivo Effects of Silver Nanoparticles on Development, Behavior, and Mitochondrial Function are Altered by Genetic Defects in Mitochondrial Dynamics. Environmental Science & Technology, 2022, 56(2): 1113-1124.
16) Fu D, Duan L*, Jiang CJ, Zhang T, Chen W*. Nanostructured manganese oxides exhibit facet-dependent oxidation capabilities. Environmental Science: Nano, 2020, 7: 3840-3848.
15) Wang FF, Liu XL, Li XG, Jiang CJ, Zhang T*, Chen W. Sulfide and ferrous iron preferentially target specific surface O-functional groups of graphene oxide: implications for accumulation of contaminants. Environmental Science: Nano, 2020, 7: 462-471.
14) Duan L, Zhang T, Song WH, Jiang CJ, Hou Y, Zhao WL, Chen W*, Alvarez PJ. Photolysis of graphene oxide in the presence of nitrate: implications for graphene oxide integrity in water and wastewater treatment. Environmental Science: Nano, 2019, 6: 136-145.
13) Low JX, Dai BZ, Tong T, Jiang CJ, Yu JG*. In Situ Irradiated X‐Ray Photoelectron Spectroscopy Investigation on a Direct Z‐Scheme TiO2/CdS Composite Film Photocatalyst. Advanced Materials, 2019, 31:1802981.
12) Fu JW, Xu QL, Low JX, Jiang CJ, Yu JG*. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 2019, 243: 556-565
11) Zhang T, Lowry GV*, Capiro NL, Chen JM, Chen W, Chen YS, Dionysiou DD, Elliott DW, Ghoshal S, Hofmann T, Hsu-Kim H, Hughes J, Jiang CJ, Jiang GB, Jing CY, Kavanaugh M, Li QL, Liu SJ, Ma J, Pan BC, Phenrat T, Qu XL, Quan X, Saleh N, Vikesland PJ, Wang QQ, Westerhoff P, Wong MS, Xia T, Xing BS, Yan B, Zhang LL, Zhou DM, Alvarez PJ. In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6: 1283-1302.
10) Wang QW#, Zhou HX#, Liu XL, Li T, Jiang CJ, Song WH*, Chen W*. Facet-dependent generation of superoxide radical anions by ZnO nanomaterials under simulated solar light. Environmental Science: Nano, 2018, 5, 2864-2875.
9) Sigmund G, Jiang CJ, Hofmann T*, Chen W*. Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. Environmental Science: Nano, 2018, 5: 2500-2518.
8) Du TT, Adeleye AS, Zhang T, Jiang CJ, Zhang M, Wang HH, Li Y*, Keller AA, Chen W. Influence of light wavelength on the photoactivity, physicochemical transformation, and fate of graphene oxide in aqueous media. Environmental Science: Nano, 2018, 5: 2590-2603.
7) Wu GZ, Jiang CJ, Zhang T*. FcγRIIB receptor-mediated apoptosis in macrophages through interplay of cadmium sulfide nanomaterials and protein corona. Ecotoxicology and Environmental Safety, 2018, 164: 140-148.
6) Wang JL, Li JG, Jiang CJ, Zhou P, Zhang PY*, Yu JG*. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Applied Catalysis B: Environmental, 2017, 204: 147-155.
5) Zhu BC, Zhang JF, Jiang CJ, Cheng B, Yu JG*. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2017, 207: 27-34.
4) Wang JL, Li JG, Jiang CJ, Zhou P, Zhang PY*, Yu JG*. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Applied Catalysis B: Environmental, 2017, 204: 147-155.
3) Maurer LL#, Yang XY#, Schindler A, Taggart R, Jiang CJ, Hsu-Kim H, Sherwood DR, Meyer JN,* Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. Nanotoxicology, 2016, 10(7): 831-835.
2) Wang JL, Zhang PY*, Li JG, Jiang CJ, Hayata G, Kim JH. Room-temperature oxidation of formaldehyde by layered manganese oxide: Effect of water. Environmental Science & Technology, 2015, 49(20): 12372-12379.
1) Yang XY, Jiang CJ, Hsu-Kim H, Badireddy AR, Dykstra M, Wiesner M, Hinton DE, Meyer JN*. Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: Effects of natural organic matter. Environmental Science & Technology, 2014, 48(6): 3486-3495.
出版专著
Surface Science of Photocatalysis (1st Edition) , Editors: Jiaguo Yu, Mietek Jaroniec, Chuanjia Jiang; Publisher: Academic Press; Published Date: 31st March 2020; ISBN: 9780081028902.
授权专利
(6)段林; 杨崔艺; 王晶; 姜传佳; 陈威.一种测定污染场地土壤中胶体释放的方法.专利号:ZL 202210457735.1,授权公告日:2024-03-26
(5)姜传佳; 刘松林; 张彤; 陈威.一种赤铁矿-羧甲基纤维素-营养盐复合物及其制备方法和应用.专利号:ZL 202210240414.6,授权公告日:2023-04-11
(4)姜传佳; 霍泽彬; 段林; 陈威.一种分析污染场地中多溴联苯醚释放和迁移特征的方法及装置.专利号:ZL 202210601039.3,授权公告日:2023-01-31
(3)姜传佳; 林楚霞; 余家国; 叶家伟.一种碳纤维基银/钴锰层状双氢氧化物复合材料及其制备方法和应用.专利号:ZL 202011101404.1,授权公告日:2022-10-11
(2)姜传佳; 林楚霞; 余家国; 叶家伟. 一种银-钴锰层状双氢氧化物复合材料及其制备方法和应用.专利号:ZL 202011101402.2,授权公告日:2022-10-14
(1)姜传佳; 刘松林; 张煜; 陈再豪; 张彤; 陈威.一种锌铝氧化物修饰生物炭负载磷酸盐复合材料及其制备方法和应用.专利号:ZL 202111095455.2,授权公告日:2022-06-03
荣誉与奖励
2018年入选天津市“131”创新型人才培养工程第三层次人选
2018年入选南开大学“百名青年学科带头人培养计划”
2018年、2019年获评环境毒理学与化学学会(SETAC)会刊Environmental Toxicology and Chemistry“优秀审稿人”(ET&C Exceptional Reviewer)
2019年获评英国皇家化学会(RSC)期刊Environmental Science: Nano“优秀审稿人”(Outstanding Reviewers)
2020年、2021年入选科睿唯安“高被引科学家”
2022年获中国化学会“青年环境化学奖”
2023年、2024年入选斯坦福大学&爱思唯尔“全球前2%顶尖科学家”