中文 | ENGLISH

南开大学环境科学与工程学院



唐景春

姓名:唐景春
职称职务:教授,博士生导师
天津市城市环境污染诊断与修复工程技术中心主任
研究领域:生态修复;生物炭及纳米材料;环境微生物技术与毒理
联系电话:13682055616
邮箱:tangjch@nankai.edu.cn

教育背景

1986.09-1990.07 南开大学环境科学系 环境生物学专业,获理学学士
1990.10-1992.02 天津市静海县环境保护局工作
1992.09-1995.03 天津轻工业学院(现天津科技大学)食品工程系,获工学硕士
1995.04-2001.10 天津市环境监测中心土壤生态室副主任
2000.01-2001.12 日本名古屋市东海技术中心环境监测技术研修交流
2001.10-2004.09 日本名古屋大学 工学部土木工学专攻,工学博士

科研教学经历

2004.10-2007.04  日本名古屋大学 EcoTopia 科学研究机构产学官连携研究员,日本神户大学内海域环境教育研究中心研究员
2005.4-至今  南开大学环境科学与工程学院副教授,教授,博士生导师
2008-2015  环境污染过程与基准教育部重点实验室副主任
2013.6-2013.12  加拿大萨省大学毒理中心 留学基金委公派访问学者
2015-至今  天津市城市环境污染诊断与修复工程技术中心主任

学术与社会任职

Bulletin of Environmental Contamination and Toxicology 编委

科研项目

1.国家自然科学基金面上项目,41877372,新型稳定化生物炭-纳米铁复合材料的制备及其地球环境行为研究, 2019/01-2022/12,62万元,主持人。
2.国家自然科学基金面上项目,41473070,土壤中典型石油烃降解基因的地理分异性及环境响应机制, 2015/01-2018/12,90万元,在研,主持人。
3.国家水专项子课题“独流减河上游示范区二级河道污染与风险控制研究”,2015ZX07203-011-06, 2015/01-2018/6, 134万元,在研,主持人。
4.中国大港油田受石油烃污染沉积物/土壤的生物修复,滨海新区科委,2016.6-2017.12,60万元,已结题,主持人
5.国家自然科学基金面上项目,31270544, 生物炭强化石油烃污染土壤生态修复及机理研究,2013/01-2016/12,79万元,已结题,主持人。
6.国家863重大项目,2013AA06A205,滨海湿地区石油采场及周边污染土壤修复技术研究与示范,2013/01-2016/12,720万元,第一参加人,已结题,参加。
7.教育部博士点基金项目(博导类),20120031110015,石油烃降解基因在土壤中的分布及其在生态修复中的作用研究,2013/011-2016/12,12万元,已结题,主持人。
8.天津市科技支撑重点项目,11ZCGYSF01400,大港油田区石油污染盐碱土壤生态恢复技术与示范,2011/04-2014/03,100,30万元,已结题,主持人。
9.天津市应用基础及前沿技术研究计划,09JCYBJC08800,堆肥技术进行石油高效降解微生物菌剂的开发及过程调控,2009/04-2012/03,已结题,主持人。
10.863重点项目,2007AA061201,“微生物-植物联合原位生态修复技术处理中低浓度石油污染土壤, 2007/12-2010/12,372万元,已结题,参加。
11.水体污染控制与治理国家科技重大专项,2008ZX07314-001-05,化学工业区污水种类及水量水质特征研究,2008-2010,已结题,子课题负责人。
12.天津市科技创新专项资金项目,08FDZDSF03400,大沽排污河底泥安全处置与河道生态修复技术集成及应用,2008-2010,已结题,子课题技术负责人。
13.土壤污染诊断与修复技术研发及示范(kzcx1-yw-06-03)”,中国科学院知识创新工程重大项目,已结题,子课题负责人2008-2011.
14.“土壤-堆肥系统多环芳烃的微生物生态效应及机制”教育部留学回国人员科研启动基金项目,已结题,主持人 2008-.
15.“Studies on Extracting Resources from Bio-wastes by the Refinery Technology”,日本文部省项目,已结题,2006-2009.
16.“封闭型海域环境修复技术研究”,神户大学科研项目 已结题,2005-2007.

学术论著

[1] Liu Xiaomei, Tang Jingchun*, Wang Lan, Giesy, John P. Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145. Ecotoxicology and Environmental Safety, 2018, 158: 123-130.
 [2] He RZ, Peng ZY, Lyu HH*, Huang H, Nan Q, Tang JC*. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment, 2018, 612: 1177–1186.
[3] Lyu H, Gao B, He F, Zimmerman A R, Ding C, Tang JC*, Crittenden J. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chemical Engineering Journal 2018, 335, 110-119.
[4] Lyu HH, Zhao H, Tang JC*, Gong YY, Huang Y, Wu QH, Gao B. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Chemosphere 2018, 194, 360-369.
[5] Peng ZY, Zhao H, Lyu HH, Wang L, Huang H, Nan Q, Tang JC*. UV modification of biochar for enhanced hexavalent chromium removal from aqueous solution,Environmental Science and Pollution Research,2018, 25(11SI): 10808-10819.
[6] Lyu, HH, Gao B, He F, Zimmerman A R, Ding C, Huang H, Tang JC*. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution 2018, 233, 54-63.
[7] Lyu HH, Tang JC*, Huang Y, Gai LS, Zeng EY, Liber K, Gong, YY. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chemical Engineering Journal 2017, 322, 516-524.
[8] Huang Y, Tang JC*, Gai LS, Gong YY, Guan HW, He RZ, Lyu H. Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal. Chemical Engineering Journal, 2017, 319, 229-239.
[9] Lyu HH, Gao B, He F, Ding C, Tang JC, Crittenden J. Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry and Engineering, 2017, 5, (11), 9568-9585.
[10] Gurav R, Lyu HH, Ma JL, Tang JC*, Liu QL, Zhang HR. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environmental Science and Pollution Research, 2017, 24(12), 11392-11403.
[11] Huang H, Tang JC,* Gao K, He RZ, Zhao H and Werner D. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics, RSC Advances, 2017, 7: 14640–14648
[12] Liu Q., Tang J.*, Liu X., Song B., Zhen M. and Ashbolt N.J. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. Journal of Applied Microbiology, 2017, 123: 875—885.
[13] Liu QL, Tang JC*, Gao K, Gurav R, Giesy JP. Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Scientific Reports, 2017, 7: 14856.
[14] Gurav R, Tang JC, Jadhav J. Novel chitinase producer Bacillus pumilus RST25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens. International Biodeterioration & Biodegradation, 2017, 125: 228-234
[15] Gong YY, Gai LS, Tang JC*, Fu J, Wang QL, Zeng EY. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 2017, 595:  743-751.
[16] Tang JC, Huang Y, Gong YY, Lyu HH, Wang QL, Ma JL. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II). Journal of Hazardous Materials, 2016, 316: 151-158.
[17] Lyu HH, He YH, Tang JC*, Hecker M, Liu QL, Jones PD, Codling G, Giesy JP. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution, 2016, 218: 1-7.
[18] Gong YY, Wang L, Liu JC, Tang JC* and Zhao DY*. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Science of the Total Environment 2016, 562: 191-200.
[19] Zhang HR, Tang JC*, Wang W, Liu JC, Gurav RG, Sun KJ. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. Journal of Environmental Sciences 2016, 47: 7-13.
[20] Liu JC, Wang L, Tang JC*, Ma JL. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial. Chemosphere, 2016,149:328-335.
[21] Lu HX, Wei F, Tang JC*, Giesy JP. Leaching of metals from cement under simulated environmental conditions. Journal of Environmental Management, 2016, 169:319-327.
[22] Gong YY,Tang JC, Zhao DY*. Application of iron sulfide particles for groundwater and soil remediation: A review. Water Research, 2016,89:309-320.
[23] Honghong Lyu; Yanyan Gong; Jingchun Tang(*); Yao Huang; Qilin Wang. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environmental Science and Pollution Research, 2016, 23: 14472~14488.
[24] Tang JC, Lv HH, Gong YY*, Huang Y. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology, 2015, 196: 355–363.
[25] Liu QL, Tang JC*, Bai ZH, Hecker M and Giesy JP. Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield, China. Scientific reports, 2015, 5:11068 | DOI: 10.1038/srep11068.
[26] Sun KJ, Tang JC*, Gong YY & Zhang HR. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Environmental Science and Pollution Research, 2015, 22(21): 16640-16651.
[27] Tang JC*, Lu XQ, Sun Q, Zhu WY. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agriculture, Ecosystems and Environment 2012, 149:109– 117.
[28] Jingchun Tang*, Qixing Zhou, Hongrui Chu, and Shinichi Nagata. Characterization of Alginase and Elicitor-Active Oligosaccharides from Gracilibacillus A7 in Alleviating Salt Stress for Brassica campestris L. Journal of Agricultural and Food Chemistry 2011,59(14): 7896–7901.
[29] J.C. Tang*, R.W. Wang, X.W. Niu, M. Wang, H.R. Chu, Q.X. Zhou. Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 2010, 7(12): 3961-3969.
[30] Jingchun Tang*, Rugang Wang, Xiaowei Niu, Qixing Zhou. Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil & Tillage Research 2010, 110(1):87-93.
[31] Jingchun Tang*, Min Wang, Qixing Zhou, Shinishi Nagata. Improved composting of Undaria pinnatifida seaweed by inoculation with Halomonas and Gracilibacillus sp. isolated from marine environments. Bioresource Technology 2011, 102(3): 2925-2930
[32] Jing-Chun Tang, Nagamitsu Maie, Yutaka Tada, Arata Katayama. Characterization of the maturing process of cattle manure compost. Process Biochemistry 2006, 41(2): 380-389.
[33] Jing-Chun Tang, Tomonari Kanamori, Yasushi Inoue, Tsuyoshi Yasuta, Shigekata Yoshida and Arata Katayama. Changes in microbial community structure in thermophilic composting process of manure detected by quinone profile method. Process Biochemistry 2004, 39 (12): 1999-2006.
[34] Xinxin Wang, Zhen Han, Zhihui Bai, Jingchun Tang, Anzhou Ma, Guoqiang Zhuang*. Archaeal community structure along a gradient of petroleum contamination in saline-alkali soil. Journal of Environmental Sciences 2011, 23 (11): 1858-1864
[35] Jingchun Tang*, Min Wang, Fei Wang, Qing Sun, Qixing Zhou. Evaluation on the Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences 2011, 23(5): 845–851
[36] Jingchun Tang*, Wenying Zhu, Rai Kookana, and Arata Katayama. Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 2013, 116(6): 653-659.
[37] Jing-Chun Tang, Atsushi Shibata, Qixing Zhou and Arata Katayama. Effect of temperature on the reaction rate and microbial community in composting of cattle manure with rice straw. Journal of Bioscience and Bioengineering 2007, 104(4): 321-328.
[38] X. Qin, J.C. Tang*, D.S. Li and Q.M. Zhang. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Letters in Applied Microbiology 2012, 55, 210–217.
[39] J.C. Tang*, H. Taniguchi, H. Chu, Q. Zhou and S. Nagata. Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. Letters in applied microbiology 2009, 48: 38-43.
[40] Xin Wang, Jingchun Tang*, Jinxin Cui, Qinglong Liu, John P. Giesy, Markus Hecker. Synergy of Electricity Generation and Waste Disposal in Solid-State Microbial Fuel Cell (MFC) of Cow Manure Composting. International Journal of Electrochemical Science, 2014,9(6):3144-3157.
 
中文论文
  (略)
 
出版专著
[1] 主编. 《石油污染土壤生态修复技术与原理》. 科学出版社. 2014年3月
[2] 主编 《生物质废弃物堆肥过程与调控》. 中国环境科学出版社 2010. 12
[3] Jingchun Tang, Hideji Tanniguchi, Qixing Zhou and Shinichi Nagata. Recycling of seaweed wakame through degradation by halotolerant bacteria. In: Seaweeds and their Role in Globally Changing Environments. Springer出版社, 2010.7
[4] 参编 《污染生态化学》,科学出版社,2011.6
 
获得专利
[1]唐景春 黄华 刘君成 杨月明 王琳 万晓彤. 一种双模式有机污染土壤电动化学-微生物协同修复模拟装置. ZL201420396291.6, 实用新型专利,授权日期:2015.03.11
[2] 张清敏,齐建超,刘文涛,唐景春,陈 威. 盐碱土壤调理剂及其制备方法(ZL200910069074.X)。
[3] 唐景春 董健 牛晓伟 王敏 王如刚 周启星. 黑麦草-高效微生物联合修复石油污染盐碱土壤的方法. 2010年7月 (ZL201010229416.2)
[4] 王鑫,周启星,蔡章,唐景春.一种土壤微生物燃料电池及修复石油烃污染土壤的方法。ZL201110324912.0
[5] 张清敏;刘志军;李明;陈亚肖;刘少坤;魏惠;唐景春;喻嫦娥. 用于污泥堆肥的发酵剂的制备方法. 专利号:ZL201110095254.2, 申请日期:2011.4.15
[6] 刘庆龙 唐景春 朱文英 张海荣 孙克静 张凯. 一种石油污染土壤中饱和烃降解基因AlkB含量测定的方法。专利号:ZL201310552671.4. 获得日期: 2017年1月18日
 

荣誉与奖励

[1] 生物质固废资源化技术研发及应用, 2013年度天津市科技进步一等奖 排名第7
[2] 城市污染河道原位修复技术集成及应, 2014年度天津市科技进步二等奖,排名第2
[3] 石油污染土壤革新修复技术与应用,2013年度天津市科技进步二等奖,排名第3
[4] 黑麦草-高效微生物联合修复石油污染盐碱土壤的方法,2016年度天津市专利优秀奖,排名第1
[5] Reaction evaluation and new process design in composting of biological wastes. 2012年度亚洲青年生物技术科学家奖。