姜传佳

发布者:envadmin发布时间:2019-06-12浏览次数:11168

姓名:姜传佳

职称:教授(博士生导师、硕士生导师)

研究领域:污染物环境界面化学、纳米材料的环境应用与环境影响、土壤污染过程与修复技术、环境友好纳米农业技术

联系电话:16622389869

邮箱: jiangcj@nankai.edu.cn

教育背景

2005.08–2009.07,清华大学环境科学与工程系环境工程专业,获学士学位
2009.09–2011.06,清华大学环境学院环境科学与工程专业,获硕士学位
2011.08–2016.05,杜克大学土木与环境工程系土木与环境工程专业,获博士学位

科研教学经历

2016.06–2016.10,武汉理工大学材料复合新技术国家重点实验室,助理研究员

2016.11–2017.12,武汉理工大学材料复合新技术国家重点实验室,副研究员

2018.01–2021.12,南开大学环境科学与工程学院,副教授

2021.12–至今,南开大学环境科学与工程学院,教授

 

开设课程

2018年起,《环境污染与修复(双语)》,南开大学本科通识公选课,春季学期

2021年起,《环境污染与修复》,南开大学本科专业课(全英文课程),秋季学期

2022年起,《纳米材料的环境效应和应用》,南开大学研究生专业选修课(全英文课程),春季学期


学术与社会任职

1. 期刊编委
SCI期刊Environmental Toxicology and Chemistry编委(2019-2021)
SCI期刊Chinese Chemical Letters青年编委(2019-2022)

国际期刊Frontiers in Nanotechnology编委、Environmental Nanotechnology主题Review Editor(2019-至今) 


2.学术期刊审稿人

担任Advanced Materials, ACS Nano, JACS Au, ACS Catalysis, Environmental Science & Technology, Applied Catalysis B: Environmental, Water Research, Journal of Catalysis, Journal of Materials Chemistry A, Journal of Hazardous Materials, Chemical Engineering Journal, Environmental Science: Nano, Carbon, ACS Applied Materials & Interfaces, AIChE Journal, Environmental Pollution, Catalysis Science & Technology, Journal of Cleaner Production, Environmental Toxicology and Chemistry, ACS ES&T Water, Science of the Total Environment, Journal of Environmental Sciences, Chinese Chemical Letters50余个期刊的审稿人

 
3. 学术组织成员
 美国化学会(ACS)及环境化学分会会员(2014年3月至今)
 中国化学会会员(2016年12月至今)
 中国环境科学学会会员(2017年9月至今)
 环境毒理学与化学学会(SETAC)会员(2018年9月至今)

科研项目

1. 国家自然科学基金青年科学基金(51702248),“超薄层状材料负载低含量钯室温催化氧化去除气态甲醛研究”,2018.01–2020.12(主持)

2. 南开大学“百名青年学科带头人培养计划”启动经费,“典型复合纳米材料的水环境转化与生物影响机制研究”,2019.01–2024.12(主持)

3. 国家重点研发计划“场地土壤污染成因与治理技术”重点专项(2019)课题,污染场地中持久性有机污染物积累动力学和健康风险模型的构建及验证(2019YFC1804204),2020.01–2023.12(参与;子课题负责人)

4. 天津市科学技术局,天津市自然科学基金青年项目,生物炭-纳米金属氧化物复合材料修复农田土壤无机-有机复合污染的晶面效应研究(20JCQNJC02050),2020.04–2022.03(主持)

5. 国家自然科学基金重点国际(地区)合作研究项目,用于污染场地地下含水层原位修复的新型纳米技术研究(22020102004),2021.01–2025.12,(参与/项目骨干)

学术论著

共发表学术论文80篇,其中SCI论文79篇,SCI总引用10400余次,H指数47(根据Web of Science,截至2022610日)。以第一作者或通讯作者在环境科学、工程技术等领域的高质量学术期刊发表论文44篇,其中包括12ESI高被引论文。入选科睿唯安20202021年度“高被引科学家”。

2018年受邀与中国地质大学(武汉)余家国教授(欧洲科学院院士)、美国Kent State University化学系Mietek Jaroniec教授(Science Advancesdeputy editor)共同编写英文专著一部。

最新论文列表及引用情况:
Web of Science ResearcherID:C-9398-2014ResearchGateGoogle Scholar


代表性论文如下(*表示通讯作者,#表示共同第一作者):
第一作者或通讯作者论文

23) Jiang CJ, Liu SL, Zhang T*, Liu Q*, Alvarez PJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. Environmental Science & Technology, 2022, in press (DOI: 10.1021/acs.est.1c08011).

22) Ye JW, Zhu BC, Cheng B, Jiang CJ*, Wageh S, Al-Ghamdi AA, Yu JG*. Synergy between Platinum and Gold Nanoparticles in Oxygen Activation for Enhanced Room-Temperature Formaldehyde Oxidation. Advanced Functional Materials, 2022, 32: 2110423.

21) Pei XL, Zhang T, Zhong JY, Chen ZH, Jiang CJ*, Chen W. Substoichiometric titanium oxide Ti2O3 exhibits greater efficiency in enhancing hydrolysis of 1,1,2,2-tetrachloroethane than TiO2 nanomaterials. Science of the Total Environment, 2021, 774: 145705.

20)  Li T, Zhong W, Jing CY, Li XG, Zhang T, Jiang CJ*, Chen W*. Enhanced Hydrolysis of p-Nitrophenyl Phosphate by Iron (Hydr)oxide Nanoparticles: Roles of Exposed Facets. Environmental Science & Technology, 2020, 54(14): 8658–8667.

19)  Wang YY#, Ye JW#, Jiang CJ*, Le Y, Cheng B, Yu JG*. Hierarchical NiMn2O4/rGO composite nanosheets decorated with Pt for low-temperature formaldehyde oxidation. Environmental Science: Nano, 2020, 7: 198–209.

18) Li T, Shen ZL, Shu YL, Li XG, Jiang CJ*, Chen W*. Facet-dependent evolution of surface defects in anatase TiO2 by thermal treatment: implications for environmental applications of photocatalysis. Environmental Science: Nano, 2019, 6: 1740–1753.

17) Pei XL, Jiang CJ*, Chen W. Enhanced hydrolysis of 1,1,2,2-tetrachloroethane by multi-walled carbon nanotube/TiO2 nanocomposites: The synergistic effect. Environmental Pollution, 2019, 255: 113211.

16) Wang YY, Jiang CJ*, Le Y, Cheng B, Yu JG*. Hierarchical honeycomb-like Pt/NiFe-LDH/rGO nanocomposite with excellent formaldehyde decomposition activity. Chemical Engineering Journal, 2019, 365: 378–388.

15) Guo JH, Lin CX, Jiang CJ*, Zhang PY*. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature. Applied Surface Science, 2019, 475: 237–255.

14) Fu JW, Yu JG*, Jiang CJ*, Cheng B. g-C3N4-based heterostructured photocatalysts. Advanced Energy Materials, 2018, 8(3): 1701503.

13) Huang SY, Cheng B, Yu JG*, Jiang CJ*. Hierarchical Pt/MnO2–Ni(OH)2 Hybrid Nanoflakes with Enhanced Room-Temperature Formaldehyde Oxidation Activity. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12481–12488.

12) Xu DF, Cheng B, Wang WK, Jiang CJ*, Yu JG*. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 2018, 231: 368–380.

11) Wang WK, Xu DF, Cheng B, Yu JG*, Jiang CJ*. Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. Journal of Materials Chemistry A, 2017, 5: 50205029.

10) Huang SY, Zhu XF, Cheng B, Yu JG*, Jiang CJ*. Flexible nickel foam decorated with Pt/NiO nanoflakes with oxygen vacancies for enhanced catalytic formaldehyde oxidation at room temperature. Environmental Science: Nano, 2017, 4: 2215–2224.

9) Ye JW#, Zhu XF#, Cheng B, Yu JG*, Jiang CJ*. Few-layered graphene-like boron nitride: A highly efficient adsorbent for indoor formaldehyde removal. Environmental Science & Technology Letters, 2017, 4(1): 2025.

8) Jiang CJ, Castellon BT, Matson CW, Aiken GR, Hsu-Kim H*. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos. Environmental Science & Technology, 2017, 51(3): 13951404.

7) Jiang CJ, Li DD, Zhang PY*, Li JG, Wang J, Yu JG*. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. Building and Environment, 2017, 117: 118–126.

6) Jiang CJ, Aiken GR, Hsu-Kim H*. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles. Environmental Science & Technology, 2015, 49(19): 1147611484.

5) Jiang CJ, Hsu-Kim H*. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry. Environmental Science: Processes & Impacts, 2014, 16: 25362544.

4) Jiang CJ, Li SS, Zhang PY*, Wang J. Pollution level and seasonal variations of carbonyl compounds, aromatic hydrocarbons, and TVOC in a furniture mall in Beijing, China. Building and Environment, 2013, 69: 227–232.

3) Jiang CJ, Zhang PY*, Zhang B, Li JG, Wang MX. Facile synthesis of activated carbon-supported porous manganese oxide via in situ reduction of permanganate for ozone decomposition. Ozone: Science & Engineering, 2013, 35(4): 308–315.

2) Jiang CJ, Zhang PY*. Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors. Frontiers of Environmental Science & Engineering, 2012, 6(2): 184–194.

1) 姜传佳,李申屾,张彭义*,王娟.北京市某家具城室内空气污染水平与特征.环境科学201031(12): 2860-2865.



非第一或通讯作者

17) Mello DF, Maurer LL, Ryde IT, Songr DH, Marinakos, SM, Jiang CJ, Wiesner MR, Hsu-Kim H, Meyer JN*. In Vivo Effects of Silver Nanoparticles on Development, Behavior, and Mitochondrial Function are Altered by Genetic Defects in Mitochondrial Dynamics. Environmental Science & Technology, 2022, 56(2): 1113–1124.

16) Duan L, Ying YQ, Zhong JY, Jiang CJ, Chen W*. Key factors controlling colloids–bulk soil distribution of polybrominated diphenyl ethers (PBDEs) at an e-waste recycling site: Implications for PBDE mobility in subsurface environment. Science of the Total Environment, 2022, 819: 153080.

15) Fu D, Duan L*, Jiang CJ, Zhang T, Chen W*. Nanostructured manganese oxides exhibit facet-dependent oxidation capabilities. Environmental Science: Nano, 2020, 7: 3840–3848.

14) Wang FF, Liu XL, Li XG, Jiang CJ, Zhang T*, Chen W. Sulfide and ferrous iron preferentially target specific surface O-functional groups of graphene oxide: implications for accumulation of contaminants. Environmental Science: Nano, 2020, 7: 462–471.

13) Zhang T, Lowry GV*, Capiro NL, Chen JM, Chen W, Chen YS, Dionysiou DD, Elliott DW, Ghoshal S, Hofmann T, Hsu-Kim H, Hughes J, Jiang CJ, Jiang GB, Jing CY, Kavanaugh M, Li QL, Liu SJ, Ma J, Pan BC, Phenrat T, Qu XL, Quan X, Saleh N, Vikesland PJ, Wang QQ, Westerhoff P, Wong MS, Xia T, Xing BS, Yan B, Zhang LL, Zhou DM, Alvarez PJ. In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6: 1283–1302.

12) Duan L, Zhang T, Song WH, Jiang CJ, Hou Y, Zhao WL, Chen W*, Alvarez PJ. Photolysis of graphene oxide in the presence of nitrate: implications for graphene oxide integrity in water and wastewater treatment. Environmental Science: Nano, 2019, 6: 136–145.

11) Low JX, Dai BZ, Tong T, Jiang CJ, Yu JG*. In Situ Irradiated X‐Ray Photoelectron Spectroscopy Investigation on a Direct Z‐Scheme TiO2/CdS Composite Film Photocatalyst. Advanced Materials, 2019, 31:1802981.

10) Fu JW, Xu QL, Low JX, Jiang CJ, Yu JG*. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 2019, 243: 556–565

9) Wang QW#, Zhou HX#, Liu XL, Li T, Jiang CJ, Song WH*, Chen W*. Facet-dependent generation of superoxide radical anions by ZnO nanomaterials under simulated solar light. Environmental Science: Nano, 2018, 5, 2864-2875.

8) Sigmund G, Jiang CJ, Hofmann T*, Chen W*. Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. Environmental Science: Nano, 2018, 5: 2500–2518.

7) Du TT, Adeleye AS, Zhang T, Jiang CJ, Zhang M, Wang HH, Li Y*, Keller AA, Chen W. Influence of light wavelength on the photoactivity, physicochemical transformation, and fate of graphene oxide in aqueous media. Environmental Science: Nano, 2018, 5: 2590–2603.

6) Wang JL, Li JG, Jiang CJ, Zhou P, Zhang PY*, Yu JG*. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Applied Catalysis B: Environmental, 2017, 204: 147155.

5) Zhu BC, Zhang JF, Jiang CJ, Cheng B, Yu JG*. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst.Applied Catalysis B: Environmental, 2017, 207: 2734.

4) Fu JW, Zhu BC, Jiang CJ, Cheng B, You W, Yu JG*. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small, 2017, 13(15), 1603938.

3) Maurer LL#, Yang XY#, Schindler A, Taggart R, Jiang CJ, Hsu-Kim H, Sherwood DR, Meyer JN,* Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. Nanotoxicology, 2016, 10(7): 831835.

2) Wang JL, Zhang PY*, Li JG, Jiang CJ, Hayata G, Kim JH. Room-temperature oxidation of formaldehyde by layered manganese oxide: Effect of water. Environmental Science & Technology, 2015, 49(20): 1237212379.

1) Yang XY, Jiang CJ, Hsu-Kim H, Badireddy AR, Dykstra M, Wiesner M, Hinton DE, Meyer JN*. Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: Effects of natural organic matter. Environmental Science & Technology, 2014, 48(6): 34863495.


出版专著
Surface Science of Photocatalysis (1st Edition) , Editors: Jiaguo Yu, Mietek Jaroniec, Chuanjia Jiang; Publisher: Academic Press; Published Date: 31st March 2020; ISBN: 9780081028902.


授权专利

姜传佳,刘松林,张煜,陈再豪,张彤,陈威;一种锌铝氧化物修饰生物炭负载磷酸盐复合材料及其制备方法和应用;专利号:ZL202111095455.2;授权公告日:20220603日。



荣誉与奖励

2018年入选天津市“131”创新型人才培养工程第三层次人选

2018年入选南开大学“百名青年学科带头人培养计划”

2018年获评Environmental Toxicology and Chemistry“优秀审稿人”(ET&C Exceptional Reviewer of 2018

2019年获评Environmental Toxicology and Chemistry“优秀审稿人”(ET&C Exceptional Reviewer of 2019

2019年获评Environmental Science: Nano“优秀审稿人”(Outstanding Reviewers for Environmental Science: Nano in 2019

2020年入选科睿唯安“高被引科学家”

2020年获评Chinese Chemical Letters“优秀审稿人”(Outstanding Contribution in Reviewing

2021年入选科睿唯安“高被引科学家”